1. Find the property that each equation shows. Write the equation in the correct box.

- **Identity Property of Addition**
 \[0 + 16 = 16\]

- **Commutative Property of Multiplication**
 \[87 \times 3 = 3 \times 87\]

- **Identity Property of Multiplication**
 \[1 \times 9 = 9\]

- **Associative Property of Multiplication**
 \[15 \times (7 \times 9) = (15 \times 7) \times 9\]

- **Commutative Property of Addition**
 \[23 + 4 + 109 = 4 + 23 + 109\]

- **Associative Property of Addition**
 \[13 + (3 + 7) = (13 + 3) + 7\]

2. For numbers 2a–2b, select Yes or No to indicate whether the value of the equation is correct.

- **2a**. \[55 - (12 + 2), \text{ value: } 41\]
 - Yes □
 - No □

- **2b**. \[25 + (14 - 4) ÷ 5, \text{ value: } 27\]
 - Yes □
 - No □

3. Carmine buys 8 plates for $1 each. He also buys 4 bowls. Each bowl costs twice as much as each plate. The store is having a sale that gives Carmine $3 off the bowls. Which numerical expression shows how much he spent?

- **A** \[(8 \times 1) + [(4 \times 16) - 3]\]
- **B** \[(8 \times 1) + [4 \times (16 - 3)]\]
- **C** \[(8 \times 1) + [(4 \times 2) - 3]\]
- **D** \[(8 \times 4) + [(4 \times 2) - 3]\]

4. Valerie earns $24 per hour. Which expression can be used to show how much money she earns in 7 hours?

- **A** \[(7 + 20) + (7 + 4)\]
- **B** \[(7 \times 20) + (7 \times 4)\]
- **C** \[(7 + 20) \times (7 + 4)\]
- **D** \[(7 \times 20) \times (7 \times 4)\]

5. Evaluate the numerical expression.
\[2 + (65 + 7) \times 3 = \boxed{218}\]

6. Jackie followed these steps to evaluate the expression \(15 - (37 + 8) ÷ 3\).

- \[37 + 8 = 45\]
- \[45 - 15 = 30\]
- \[30 ÷ 3 = 10\]

Mark looks at Jackie’s work and says she made a mistake. He says she should have divided by 3 before she subtracted.

Part A
Which student is correct? Explain how you know.

- **Mark:** Possible answer: According to the order of operations, you should perform division before subtraction.

Part B
Evaluate the expression.
\[37 + 8 = 45, 45 ÷ 3 = 15, 15 - 15 = 0\]
1. An adult elephant eats about 300 pounds of food each day. Write an expression to represent the number of pounds of food a herd of 12 elephants eats in 5 days.

\[5 \times (300 \times 12) \]

2. Tara bought 2 bottles of juice a day for 15 days. On the 16th day, Tara bought 7 bottles of juice. Write an expression that matches the words.

\[(2 \times 15) + 7 \]

3. Paul displays his sports trophies on shelves in his room. He has 5 trophies on each of 3 shelves and 2 trophies on another shelf. Write an expression to represent the number of trophies Paul displays.

\[(5 \times 3) + 2 \]

4. Peter ran 3 miles a day for 17 days. On the 18th day, Peter ran 5 miles. Write an expression that matches the words.

\[(3 \times 17) + 5 \]

5. Daniel bought 30 tokens when he arrived at the festival. He won 8 more tokens for getting the highest score at the basketball contest, but lost 6 tokens at the ring toss game. Write an expression to find the number of tokens Daniel has left.

\[30 + 8 - 6 \]

6. Write 12.9 + 8 using words.

Possible answer: Add 8 to 12 and 9 tenths.

7. Write 8 ÷ (7 - 5) using words.

Possible answer: 8 divided by the difference of 7 and 5

8. For numbers 8a-8e, select Yes or No to indicate whether the expression represents multiplying the sum of 8 and 2 by 6.

8a. 8 + 2 × 6
 ○ Yes ● No

8b. (8 + 2) × 6
 ● Yes ○ No

8c. 8 + (2 × 6)
 ○ Yes ● No

8d. 6 × (8 + 2)
 ● Yes ○ No

8e. 6 × 8 + 2
 ○ Yes ● No
1. The table shows two sequences of numbers.

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of T-shirts sold</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Amount earned ($)</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>?</td>
</tr>
</tbody>
</table>

For numbers 1a–1b, choose the correct values to describe how one sequence is related to the other.

1a. The unknown number in Day 5 is 100.

1b. The rule that describes how the number of T-shirts sold relates to the amount earned is multiply by 5.

2. Jawan made a table to figure out how much he earns at his job.

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours Worked</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>...</td>
<td>36</td>
</tr>
<tr>
<td>Amount Earned ($)</td>
<td>54</td>
<td>108</td>
<td>162</td>
<td>216</td>
<td>...</td>
<td>?</td>
</tr>
</tbody>
</table>

Part A
Write a rule that relates the amount Jawan earns to the number of hours worked. Explain how you can check your rule.

Possible answer: The rule is multiply by 9. I can check by multiplying the number of hours worked each day by 9. The product will equal the amount earned in the table.

Part B
How much does he earn from his job by the end of Week 6?

$ \underline{324}$

3. Look for a pattern.

What is the rule? add 2

How many squares will there be in Figure 5? \underline{11} squares

4. Steven is buying a new mountain bike on layaway for $272. If he pays $34 each week, how many weeks will it take Steven to pay for the bike? How can making a table help you solve the problem?

8 weeks; Possible explanation: I can make a table that shows how much Steven pays each week and the totals until I reach $272.

5. Look for a pattern.

What is the rule? add 2

How many squares will there be in Figure 5? \underline{13} squares
Name ____________________________

1. For numbers 1a–1d select Yes or No to indicate whether each statement is correct.
 1a. 170 is \(\frac{1}{10} \) of 17 ○ Yes ● No
 1b. 660 is 10 times as much as 60 ○ Yes ● No
 1c. 900 is \(\frac{1}{10} \) of 9,000 ○ Yes ○ No
 1d. 4,400 is 10 times as much as 440 ○ Yes ○ No

2. Carrie has 140 coins. She has 10 times as many coins as she had last month. How many coins did Carrie have last month?
 14

3. Select other ways to write 700,562. Mark all that apply.
 A (7 × 100,000) + (5 × 1,000) + (6 × 10) + (2 × 1)
 ○ seven hundred thousand, five hundred sixty-two
 ○ 700,000 + 500 + 60 + 2
 D 7 hundred thousands + 5 hundreds + 62 tens

4. Shade the model to show the decimal 0.542.

Name ____________________________

5. Select other ways to write 50,897. Mark all that apply.
 (5 × 10,000) + (8 × 100) + (9 × 10) + (7 × 1)
 ○ 50,000 + 800 + 90 + 7
 ○ fifty thousand, eight hundred ninety-seven
 ○ 5,000 + 800 + 90 + 7

6. 0.84 is 10 times as much as
 ○ 8.4
 ○ 84
 ○ 0.84 and \(\frac{1}{10} \) of

7. Shade the model to show the decimal 0.674.

8. 0.92 is 10 times as much as
 ○ 0.092
 ○ 0.92
 ○ 0.092 and \(\frac{1}{10} \) of
1. The table shows the equations Ms. Valez discussed in math class today.

<table>
<thead>
<tr>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6 \times 10^0 = 6$</td>
</tr>
<tr>
<td>$6 \times 10^1 = 60$</td>
</tr>
<tr>
<td>$6 \times 10^2 = 600$</td>
</tr>
<tr>
<td>$6 \times 10^3 = 6000$</td>
</tr>
</tbody>
</table>

Explain the pattern of zeros in the product when multiplying by powers of 10.

Possible explanation: For each power of ten, the number of zeros written after the base is the same as the number in the exponent.

2. Omar is making a scale model of the Statue of Liberty for a report on New York City. The Statue of Liberty is 305 feet tall measuring from the ground to the tip of the torch. If the model is $\frac{1}{100}$ the actual size of the Statue of Liberty, how tall is the model?

3.05 feet

3. For numbers 3a–3d, choose Yes or No to indicate whether the product is correct.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a. $0.62 \times 10 = 62$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3b. $0.53 \times 10 = 5.3$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3c. $0.09 \times 100 = 9$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3d. $0.60 \times 1,000 = 60$</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

4. Nicole is making 1,000 bows for people who donate to the library book sale. She needs a piece of ribbon that is 0.75 meter long for each bow. How many meters of ribbon does Nicole need to make the bows? Explain how to find the answer.

750 meters; Possible explanation: Multiply 1,000 by 0.75 by moving the decimal point 3 places to the right.

5. Rita is hiking along a trail that is 13.7 miles long. So far she has hiked along one-tenth of the trail. How far has Rita hiked?

1.37 miles

6. Use the numbers on the tiles to write the value of each expression. You can use a tile more than once or not at all.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$35.5 \div 10^0$</td>
<td>35.5</td>
</tr>
<tr>
<td>$35.5 \div 10$</td>
<td>3.55</td>
</tr>
<tr>
<td>$35.5 \div 10^2$</td>
<td>0.355</td>
</tr>
</tbody>
</table>

7. Select other ways to express 10^4. Mark all that apply.

- A. 10×4
- B. $10 + 4$
- C. $1,000$
- D. $10,000$
- E. $10 + 10 + 10 + 10$
- F. $10 \times 10 \times 10 \times 10$
1. What is the value of the underlined digit? Mark all that apply.

- 0.679
 - 0.6
 - B 0.06
 - six hundredths
 - six tenths

2. Choose the value that makes the statement true.

 In the number 1.025, the value of the digit 2 is
 - two tenths
 - two hundredths
 - two thousandths

 and the value of the digit 5 is
 - five tenths
 - five hundredths
 - five thousandths

3. What is the value of the underlined digit? Mark all that apply.

 - 0.589
 - A 0.8
 - E 8 × $\frac{1}{10}$
 - eight hundredths
 - eight tenths

4. What is the value of the underlined digit? Mark all that apply.

 - 0.283
 - A 0.8
 - B 0.08
 - C $8 \times \frac{1}{10}$
 - eight hundredths
 - eight tenths

5. Choose the value that makes the statement true.

 In the number 2.175, the value of the digit 2 is
 - 2 ones
 - 2 tenths
 - 2 hundredths
 - 2 thousandths

 and the value of the digit 7 is
 - 7 ones
 - 7 tenths
 - 7 hundredths
 - 7 thousandths

6. Write 9.57 in word form.

 nine and fifty-seven hundredths

7. Jon is not sure how to write 81.402 in expanded form using powers of ten. Copy and complete the expanded form of the number.

 $9 \times 100 + 8 \times 10 + 1 \times 1 + 4 \times 0.1 + 1 \times 0.01$

8. Write $2 \times 100 + 9 \times 1 + 7 \times 0.1 + 8 \times 0.01$ in standard form.

 209.708
1. Chaz kept a record of how many gallons of gas he purchased each day last week.

<table>
<thead>
<tr>
<th>Day</th>
<th>Gas (in gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>4.5</td>
</tr>
<tr>
<td>Tuesday</td>
<td>3.9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>4.258</td>
</tr>
<tr>
<td>Thursday</td>
<td>3.75</td>
</tr>
<tr>
<td>Friday</td>
<td>4.256</td>
</tr>
</tbody>
</table>

Order the days from least amount of gas Chaz purchased to greatest amount of gas Chaz purchased.

Thursday | Tuesday | Friday | Wednesday | Monday

Order the weeks from the least amount of miles Jasmine ran to the greatest amount of miles Jasmine ran.

Week 2 | Week 1 | Week 3 | Week 4

Order the days from least amount of gas Chaz purchased to greatest amount of gas Chaz purchased.

Thursday | Tuesday | Friday | Wednesday | Monday

Order the weeks from the least amount of miles Jasmine ran to the greatest amount of miles Jasmine ran.

Week 2 | Week 1 | Week 3 | Week 4

2. The four highest scores on the floor exercise at a gymnastics meet were 9.675, 9.25, 9.325, and 9.5 points. Choose the numbers that make the statement true.

The lowest of these four scores was 9.675 points. The highest of these four scores was 9.325 points. The highest of these four scores was 9.5 points.

3. Jasmine kept a record of how many miles she ran each week during one month.

<table>
<thead>
<tr>
<th>Week</th>
<th>Distance (in miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>4.754</td>
</tr>
<tr>
<td>Week 2</td>
<td>4.752</td>
</tr>
<tr>
<td>Week 3</td>
<td>5.19</td>
</tr>
<tr>
<td>Week 4</td>
<td>5.75</td>
</tr>
</tbody>
</table>

Order the weeks from the least amount of miles Jasmine ran to the greatest amount of miles Jasmine ran.

Week 2 | Week 1 | Week 3 | Week 4

Order the weeks from the least amount of miles Jasmine ran to the greatest amount of miles Jasmine ran.

Week 2 | Week 1 | Week 3 | Week 4

4. The four highest scores at a diving meet were 9.08, 9.1, 9.15, and 9.06 points. Choose the numbers that make the statement true.

The lowest of these four scores was 9.06 points. The highest of these four scores was 9.15 points. The highest of these four scores was 9.1 points.

5. In which number is the value of the digit 5 greater? Write the number in the box.

3.514 25 25
1. For numbers 1a–1c, select Yes or No to indicate whether each statement is correct.

1a. 16.437 rounded to the nearest whole number is 16.
 ○ Yes ○ No

1b. 16.437 rounded to the nearest tenth is 16.4.
 ○ Yes ○ No

1c. 16.437 rounded to the nearest hundredth is 16.43.
 ○ Yes ○ No

2. Rafael bought 2.15 pounds of potato salad and 4.2 pounds of macaroni salad to bring to a picnic. For numbers 2a–2c, select Yes or No to indicate whether each statement is true.

2a. Rounded to the nearest whole number, Rafael bought 2 pounds of potato salad.
 ○ Yes ○ No

2b. Rounded to the nearest whole number, Rafael bought 4 pounds of macaroni salad.
 ○ Yes ○ No

2c. Rounded to the nearest tenth, Rafael bought 2.1 pounds of potato salad.
 ○ Yes ○ No

3. Michelle records the value of one Euro in U.S. dollars each day for her social studies project. The table shows the data she has recorded so far.

<table>
<thead>
<tr>
<th>Day</th>
<th>Value of 1 Euro (in U.S. dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>1.448</td>
</tr>
<tr>
<td>Tuesday</td>
<td>1.443</td>
</tr>
<tr>
<td>Wednesday</td>
<td>1.452</td>
</tr>
<tr>
<td>Thursday</td>
<td>1.458</td>
</tr>
</tbody>
</table>

On which two days was the value of 1 Euro the same when rounded to the nearest hundredth of a dollar?

Monday and Wednesday

4. The price of a certain brand of cereal at the grocery store is $0.258 per ounce. For numbers 4a–4c, select Yes or No to indicate whether each statement is correct.

4a. Rounded to the nearest whole number, the price is $1 per ounce.
 ○ Yes ○ No

4b. Rounded to the nearest tenth, the price is $0.3 per ounce.
 ○ Yes ○ No

4c. Rounded to the nearest hundredth, the price is $0.26 per ounce.
 ○ Yes ○ No

5. For numbers 5a–5c, select Yes or No to indicate whether each statement is correct.

5a. 1.682 inches rounded to the nearest whole number is 1 inch.
 ○ Yes ○ No

5b. 1.682 inches rounded to the nearest tenth is 1.6 inches.
 ○ Yes ○ No

5c. 1.682 inches rounded to the nearest hundredth is 1.68 inches.
 ○ Yes ○ No

6. Trudy is going to London next summer. Each week, she records the value of one British pound in U.S. dollars. The table shows the data she has recorded so far.

<table>
<thead>
<tr>
<th>Week</th>
<th>Value of 1 British Pound (in U.S dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.598</td>
</tr>
<tr>
<td>2</td>
<td>1.616</td>
</tr>
<tr>
<td>3</td>
<td>1.634</td>
</tr>
<tr>
<td>4</td>
<td>1.623</td>
</tr>
</tbody>
</table>

For which two weeks was the value of 1 British pound the same when rounded to the nearest hundredth of a dollar?

Weeks 2 and 4
1. It is 3,452 miles round trip to Craig’s aunt’s house. If he travels to her house 3 times this year, how many miles did he travel in all?

\[3,452 \times 3 = 10,356 \] miles

2. Lindsey earns $33 per day at her part-time job. Complete the table to show the total amount Lindsey earns.

<table>
<thead>
<tr>
<th>Number of Days</th>
<th>Total Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$99</td>
</tr>
<tr>
<td>8</td>
<td>$264</td>
</tr>
<tr>
<td>14</td>
<td>$462</td>
</tr>
</tbody>
</table>

3. Jeannette eats a breakfast sandwich that has 345 calories. If she eats the same kind of sandwich every day for 12 days, how many calories would she have for breakfast?

\[345 \times 12 = 4,140 \] calories

4. There are 8 teachers going to the science museum. If each teacher pays $15 to get inside, how much did the teachers pay?

\[8 \times 15 = 120 \] dollars

5. For numbers 5a–5b, select Yes or No to indicate whether each equation is correct.

- 5a. \[1,205 \times 3 = 3,600 \] ○ Yes □ No
- 5b. \[1,362 \times 5 = 6,810 \] ○ Yes □ No

6. Rachel earns $21 per day. For numbers 6a–6d, select Yes or No to indicate whether each statement is correct.

- 6a. Rachel earns $421 for 20 days of work. ○ Yes □ No
- 6b. Rachel earns $315 for 15 days of work. □ Yes ○ No
- 6c. Rachel earns $273 for 13 days of work. ○ Yes □ No
- 6d. Rachel earns $250 for 13 days of work. □ Yes ○ No

7. It is 1,325 feet from Kinsey’s house to her school. Kinsey walks to school each morning and gets a ride home each afternoon. How many feet does Kinsey walk to school in 5 days?

\[1,325 \times 5 = 6,625 \] feet

8. Liam saves $12 of his allowance each week. Complete the table to show the total amount Liam saves.

<table>
<thead>
<tr>
<th>Number of Weeks</th>
<th>Total Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$48</td>
</tr>
<tr>
<td>9</td>
<td>$108</td>
</tr>
<tr>
<td>15</td>
<td>$180</td>
</tr>
</tbody>
</table>

9. Mariene can type 157 words per minute. If she types at the same rate, how many words can she type in 25 minutes?

\[157 \times 25 = 3,925 \] words
1. Jill wants to find the quotient. Use multiplication and the Distributive Property to help Jill find the quotient.

\[144 \div 8 = 18 \]

Multiplication: \[18 \times 8 = 144 \]

Distributive Property: \[(8 \times 10) + (8 \times 6) \]

2. Choose the word that makes the sentence true.

The first digit in the quotient of \(1,875 \div 9 \) will be in the _____ place.

- ones
- tens
- hundreds
- thousands

3. Dana is making a seating chart for an awards banquet. There are 184 people coming to the banquet. If 8 people can be seated at each table, how many tables will be needed for the awards banquet?

23 tables

4. For numbers 4a–4d, select Yes or No to indicate whether the quotient is correct.

<table>
<thead>
<tr>
<th>Number</th>
<th>Quotient</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a.</td>
<td>225 ÷ 9 = 25</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4b.</td>
<td>154 ÷ 7 = 22</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4c.</td>
<td>312 ÷ 9 = 39</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4d.</td>
<td>412 ÷ 2 = 260</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

5. Write the letter for each quick picture under the division problem it represents.

A

B

C

6. Divide 575 by 14 by using partial quotients. What is the quotient? Explain your answer using numbers and words.

\[575 \div 14 = 41 r1 \]

Possible explanation: I subtracted multiples of 14 from the dividend until the number left was less than 14. Then I added the partial quotients to find the quotient.
1. Clayton Road is 2.25 miles long. Wood Pike Road is 1.7 miles long. Kisha used a quick picture to find the combined length of Clayton Road and Wood Pike Road. Does Kisha’s work make sense? Explain why or why not.

Yes. Possible explanation: She regrouped the 10 tenths as 1 one and added the 1 to the whole numbers.

2. The school is 3.65 miles from Tonya’s house and 1.28 miles from Jamal’s house. How much farther from school is Tonya’s house than Jamal’s house? Explain how you can use a quick picture to solve the problem.

2.37 miles; Possible explanation: I can draw 3.65 using 3 squares for ones, 6 lines for tenths, and 5 circles for hundredths. I would regroup 1 tenth as 10 hundredths. Then, I would subtract 8 hundredths from 15 hundredths. Then, I would subtract 2 tenths from 5 tenths. Last, I would subtract 1 from 3.

3. A vet measured the mass of two birds. The mass of the robin was 76.64 grams. The mass of the blue jay was 81.54 grams. Estimate the difference in the masses of the birds. Possible estimate:

about 5 grams

4. Ken and Leah are trying to solve a science homework question. They need to find out how much a rock that weighs 4 pounds on Earth would weigh on Venus. They know they can multiply the amount the rock weighs on Earth by 0.91 to find its weight on Venus. Select the partial products Ken and Leah would need to add to find the product of 4 and 0.91. Mark all that apply.

A 0.95
B 0.04
C 3.65
D 3.6
E 0.36

5. Write each number in a box next to the expression that has the same value. A number may be used more than once.

8.99
89.9
899

29 × 31 = \[899\]
29 × 3.1 = \[89.9\]
0.29 × 31 = \[8.99\]
2.9 × 31 = \[89.9\]

6. Melinda, Zachary, and Heather went to the mall to shop for school supplies. Melinda spent $14.25 on her supplies. Zachary spent $2.30 more than Melinda spent. Heather spent 2 times as much money as Zachary spent. How much did Heather spend on school supplies?

$33.10

7. Draw a model to show \[5.5 ÷ 5\].

5.5 ÷ 5 = \[1.1\]

8. Emma, Brandy, and Damian will cut a rope that is 29.8 feet long into 3 jump ropes. Each of the 3 jump ropes will be the same length. Write a division sentence using compatible numbers to estimate the length of each rope.

Possible estimate: \[30 ÷ 3 = 10\]
1. Write $\frac{2}{5}$ and $\frac{3}{4}$ as equivalent fractions using a common denominator.
 Possible answers:
 $\frac{6}{15}$ and $\frac{5}{15}$

2. Jill brought $2\frac{1}{3}$ boxes of carrot muffins for a bake sale. Mike brought $1\frac{3}{4}$ boxes of apple muffins. What is the total number of boxes of muffins Jill and Mike brought to the bake sale?
 $4\frac{1}{12}$ boxes of muffins

3. Joshua uses a rule to write the following sequence of numbers.
 \[\frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \ldots, 1\frac{1}{2}\]
 What rule did Joshua use? add $\frac{1}{2}$
 What is the missing number in the sequence? $\frac{1}{6}$

4. For numbers 4a–4c, tell whether each expression was rewritten using the Commutative Property or the Associative Property. Choose the correct property of addition.
 4a. $\frac{1}{6} + \left(\frac{7}{6} + \frac{5}{6}\right) = \frac{1}{6} + \frac{5}{6} + \frac{7}{6}$
 Associative Property
 4b. $\frac{7}{10} + \frac{1}{10} = \frac{1}{10} + \frac{7}{10} + \frac{1}{10}$
 Associative Property
 4c. $\frac{6^2}{9} + \frac{4^2}{9} + \frac{3^2}{9} = \frac{6^2}{9} + \frac{4^2}{9} + \frac{3^2}{9}$
 Associative Property

5. Jeffrey walked $\frac{1}{3}$ mile on Monday and jogged $\frac{3}{4}$ mile on Tuesday. How far did he walk and jog on Monday and Tuesday combined? Use the tiles to complete the fraction strip model to show how you found your answer. The fractions may be used more than once or not at all.
 $\frac{11}{12}$ mile(s)

6. Tom exercised $\frac{4}{5}$ hour on Monday and $\frac{5}{6}$ hour on Tuesday.
 Part A
 Complete the calculations below to write equivalent fractions with a common denominator. Possible answers given.
 \[
 \frac{4}{5} = \frac{4}{5} \times \frac{6}{6} = \frac{24}{30}
 \quad \quad \quad \quad \quad \quad \quad \quad
 \frac{5}{6} = \frac{5}{6} \times \frac{5}{5} = \frac{25}{30}
 \]
 Part B
 How much time did Tom spend exercising on Monday and Tuesday combined? Explain how you found your answer.
 $1\frac{19}{30}$ hours; Possible answer: To find the total amount of time spent exercising, I added the numerators and kept the same denominator to find $\frac{24}{30} + \frac{25}{30} = \frac{49}{30}$. Then I regrouped $\frac{49}{30}$ as 1 leaving $\frac{19}{30}$ left over. I wrote the answer as $1\frac{19}{30}$.

 Part C
 How much longer did Tom spend exercising on Tuesday than he spent on Monday? Explain how you found your answer.
 $\frac{1}{30}$ hour; Possible answer: To find the difference in the amount of time spent exercising, I subtracted the numerators and kept the same denominator to find $\frac{25}{30} - \frac{24}{30} = \frac{1}{30}$.
1. The shaded part of the diagram shows what Genie has left from a meter of string. She will use \(\frac{3}{5} \) meter of string to make bracelets. She wants to determine how much of the string she will have remaining after making the bracelets. For numbers 1a–1c, select Yes or No to indicate whether each statement is true.

1a. To determine how much string will be left after making the bracelets, Rebecca must find \(\frac{3}{5} - \frac{3}{5} \).

1b. The fractions \(\frac{3}{5} \) and \(\frac{6}{10} \) are equivalent.

1c. Rebecca will have \(\frac{1}{5} \) meter of string left.

2. Sophia babysat for 3 \(\frac{7}{12} \) hours on Friday. She babysat for 2 \(\frac{5}{6} \) hours on Saturday. For numbers 2a–2c, estimate how long Sophia babysat on Friday and Saturday combined. Choose the correct benchmarks and sum.

2a. Sophia babysat for about \(\frac{3}{2} \) hours on Friday.

2b. Sophia babysat for about \(2 \frac{1}{2} \) hours on Saturday.

2c. Sophia babysat for about \(5 \frac{1}{6} \) hours on Friday and Saturday combined.

3. Four students spent time volunteering last weekend. The table shows how much time each student spent volunteering.

<table>
<thead>
<tr>
<th>Volunteering</th>
<th>Time (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>4 (\frac{4}{9})</td>
</tr>
<tr>
<td>Beth</td>
<td>6 (\frac{1}{2})</td>
</tr>
<tr>
<td>Victor</td>
<td>5 (\frac{3}{8})</td>
</tr>
<tr>
<td>Cal</td>
<td>5 (\frac{5}{6})</td>
</tr>
</tbody>
</table>

Match each pair of students with the difference between how much time they spent volunteering.

- Amy and Victor = 3 \(\frac{1}{4} \) hour
- Cal and Beth = 1 \(\frac{1}{2} \) hour
- Beth and Victor = 4 \(\frac{5}{12} \) hour

4. Rodrigo practiced playing the guitar 15 \(\frac{1}{3} \) hours over the past 3 weeks. He practiced for 6 \(\frac{1}{4} \) hours during the first week and 4 \(\frac{2}{3} \) hours during the second week. How much time did Rodrigo spend practicing during the third week? Use the numbers and symbols to write an equation that represents the problem. Then solve the equation. Symbols may be used more than once or not at all.

\[
15 \frac{1}{3} - 6 \frac{1}{4} - 4 \frac{2}{3} = x
\]

Possible answer: \(15 \frac{1}{3} = 6 \frac{1}{4} + 4 \frac{2}{3} + x \)

Practice time during third week: \(4 \frac{5}{12} \) hours
1. Samuel needs 233 feet of wood to build a fence. The wood comes in lengths of 11 feet.

Part A
How many total pieces of wood will Samuel need? Explain your answer.
22 pieces; Possible explanation: I need to divide 233 by 11. The answer is 21 r2. Since Samuel can't buy a partial piece of wood, I need to add 1 to the quotient. So, the final answer is 22.

Part B
Theresa needs twice as many feet of wood as Samuel. How many pieces of wood does Theresa need? Explain your answer.
43 pieces of wood; Possible explanation: Twice the length of 233 feet is 466 feet. If I divide 466 by 11, the answer is 42 r4. Theresa needs to buy 43 pieces of wood.

2. Twelve pounds of beans are distributed equally into 8 bags to give out at the food bank. How many pounds of beans are in each bag?

3 or 1 1/2 pounds

3. Five friends share 3 bags of trail mix equally. What fraction of a bag of trail mix does each friend get?
Each friend will receive 3/5 of a bag of trail mix.

4. Zoe has 5 cucumbers she grew in her garden. She wants to share them equally among 4 of her neighbors. How many cucumbers will each neighbor receive? Use the numbers on the tiles to complete the number sentence. You may use a number more than once or not at all.

5. Steve is buying apples for the fifth grade. Each bag holds 12 apples. If there are 75 students total, how many bags of apples will Steve need to buy if he wants to give one apple to each student?

7 bags

6. Russ and Vickie are trying to solve this problem: There are 146 students taking buses to the museum. If each bus holds 24 students, how many buses will they need?

Russ says the students need 6 buses. Vickie says they need 7 buses. Who is correct? Explain your reasoning.

Vickie is correct. The answer to the problem is 6 remainder 2. This means that there are 6 full buses of students and two extra students. Those 2 students must also travel by bus to the museum; so, an extra bus is needed, making the total 7 buses.

7. Seven friends picked 7 quarts of blueberries. Three of the friends will share 4 quarts of blueberries equally and the other 4 friends will share 3 quarts of the blueberries equally. In which group does each friend get a greater amount of blueberries? Explain your reasoning.

The group of 3 friends will get a greater amount of blueberries. Possible explanation: 4 ÷ 3 = 4/3 and 3 ÷ 4 = 3/4
4/3 = 1 1/3
3/4 = 3/4
1 1/3 > 3/4

8. Nine friends share 3 pumpkin pies equally. What fraction of a pumpkin pie does each friend get?
Each friend will get 3/9 or 1/3 of a pumpkin pie.
1. Mrs. Williams is organizing her office supplies. There are 3 open boxes of paper clips in her desk drawer. Each box has \(\frac{7}{8} \) of the paper clips remaining. How many boxes of paper clips are left? Shade the model and complete the calculations below to show how you found your answer.

\[
3 \times \frac{7}{8} = \frac{21}{8} = \frac{25}{8} \text{ full boxes of paper clips}
\]

2. Logan bought 15 balloons. Four-fifths of the balloons are purple. How many of the balloons are purple? Draw a model to show how you found your answer.

Possible answer:

\[
\text{12 purple balloons}
\]

3. Taniqua took a test that had 20 multiple-choice questions and 10 True/False questions. She got \(\frac{9}{10} \) of the multiple-choice questions correct, and she got \(\frac{4}{5} \) of the True/False questions correct.

3a. How many multiple-choice questions did Taniqua get correct?

\[
18 \text{ multiple-choice questions}
\]

3b. How many True/False questions did Taniqua get correct?

\[
8 \text{ True/False questions}
\]

4. Frannie put \(\frac{2}{3} \) of her music collection on an mp3 player. While on vacation, she listened to \(\frac{3}{5} \) of the music on the player. How much of Frannie's music collection did she listen to while on vacation? For numbers 4a–4d, choose the correct values to describe how to solve the problem.

4a. Draw a rectangular array with 3 rows and \(\frac{3}{4} \) columns.

4b. Shade \(\frac{1}{2} \) of the rows gray.

4c. Shade \(\frac{3}{5} \) of the gray squares black.

4d. Frannie listened to \(\frac{2}{5} \) of her music collection while on vacation.

5. In a fifth grade class, \(\frac{4}{5} \) of the girls have brown hair. Of the brown-haired girls, \(\frac{3}{4} \) of them have long hair. Of the girls with long brown hair, \(\frac{1}{3} \) of them have green eyes.

Part A

What fraction of the girls in the class have long brown hair?

\[
\frac{3}{5} \text{ of the girls}
\]

Part B

What fraction of the girls in the class have long brown hair and green eyes?

\[
\frac{1}{5} \text{ of the girls}
\]
5. Peggy is making a quilt using panels that are $\frac{1}{2}$ foot by $\frac{1}{2}$ foot. The quilt is 5$\frac{1}{2}$ feet long and 4 feet wide.

Part A
Let each square of the grid below represent $\frac{1}{2}$ foot by $\frac{1}{2}$ foot. Draw a rectangle on the grid to represent the quilt.

[Diagram of grid with rectangle drawn]

Possible answer:

Part B
What is the area of the quilt? Explain how you found your answer.

Possible explanation: There are 8 rows and 11 columns of squares, for a total of $8 \times 11 = 88$ squares. Each square represents an area of $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ square foot. So, the area of the quilt is $88 \times \frac{1}{4} = 22$ square feet.

6. An area rug has an area of 48 square feet. Two similar rugs have areas of 108 square feet and 192 square feet. In each rug, the length is 1$\frac{1}{2}$ times the width. Which of the following could be the dimensions of one of the area rugs? Mark all that apply.

- [] 6 feet by 8 feet
- [x] 10 feet by 18 feet
- [] 9 feet by 12 feet
- [] 12 feet by 16 feet
- [x] 4 feet by 12 feet
S.NF.5a
Apply and extend previous understandings of multiplication and division of fractions.

1. Diana worked on her science project for $5 \frac{1}{3}$ hours. Gabe worked on his science project $1 \frac{1}{4}$ times as long as Diana. Paula worked on her science project $\frac{3}{4}$ times as long as Diana. For numbers 1a–1d, select Yes or No to indicate whether each statement is correct.

1a. Diana worked longer on her science project than Gabe worked on his science project. **Yes**

1b. Paula worked less on her science project than Diana worked on her science project. **Yes**

1c. Gabe worked longer on his science project than Paula worked on her science project. **Yes**

1d. Gabe worked longer on his science project than Diana and Paula combined. **Yes**

2. Write each multiplication expression in the correct box.

\[
\begin{align*}
\frac{4}{5} \times \frac{1}{8} & \quad \text{Product is equal to } \frac{1}{5} \\
\frac{1}{3} \times \frac{4}{5} & \quad \text{Product is greater than } \frac{1}{5} \\
\frac{3 \times 4}{2} & \quad \text{Product is less than } \frac{1}{5}
\end{align*}
\]

3. Doreen lives $\frac{3}{4}$ mile from the library. Sheila lives $\frac{1}{3}$ as far away from the library as Doreen. For numbers 3a–3c, choose Yes or No to answer each question.

3a. Does Doreen live farther from the library than Sheila? **Yes**

3b. Does Sheila live $\frac{1}{2}$ mile from the library? **Yes**

3c. Does Sheila live twice as far from the library than Doreen? **No**

5. Stuart rode his bicycle $6 \frac{2}{3}$ miles on Friday. On Saturday he rode $1 \frac{1}{3}$ times as far as he rode on Friday. On Sunday he rode $\frac{5}{2}$ times as far as he rode on Friday. For numbers 5a–5d, select Yes or No to indicate whether each statement is correct.

5a. Stuart rode more miles on Saturday than he rode on Friday. **Yes**

5b. Stuart rode more miles on Friday than he rode on Saturday and Sunday combined. **No**

5c. Stuart rode fewer miles on Sunday than he rode on Friday. **Yes**

5d. Stuart rode more miles on Sunday than he rode on Saturday. **No**

6. Write each multiplication expression in the correct box.

\[
\begin{align*}
\frac{4 \times 2}{3} & \quad \text{Product is equal to } \frac{2}{3} \\
\frac{4 \times 2}{3} & \quad \text{Product is greater than } \frac{2}{3} \\
\frac{2 \times 5}{3} & \quad \text{Product is less than } \frac{2}{3}
\end{align*}
\]
1. A scientist had $\frac{3}{5}$ liter of solution. He used $\frac{1}{6}$ of the solution for an experiment. How much solution did the scientist use for the experiment? Use the numbers on the tiles to complete the calculations. You may use numbers more than once or not at all.

$$3 \times \frac{1}{5} \times 6$$

2. For numbers 2a–2d, without multiplying, use the symbols from the list on the right to indicate how the product will compare with the factor. Symbols can be used more than once.

2a. $\frac{13}{4} \times \frac{5}{6} = x$

2b. $\frac{4}{3} \times \frac{1}{2} = x$

2c. $\frac{2}{5} \times \frac{1}{7} = x$

2d. $\frac{5}{9} \times \frac{3}{2} = x$

3. For numbers 3a–3d, without multiplying, use the symbols from the list on the right to indicate how the product will compare with the factor. Symbols can be used more than once.

3a. $\frac{13}{4} \times \frac{5}{6} = x$

3b. $\frac{4}{3} \times \frac{1}{2} = x$

3c. $\frac{2}{5} \times \frac{1}{7} = x$

3d. $\frac{5}{9} \times \frac{3}{2} = x$

4. For numbers 4a–4d, without multiplying, use the symbols from the list on the right to indicate how the product will compare with the factor. Symbols can be used more than once.

4a. $\frac{13}{4} \times \frac{5}{6} = x$

4b. $\frac{4}{3} \times \frac{1}{2} = x$

4c. $\frac{2}{5} \times \frac{1}{7} = x$

4d. $\frac{5}{9} \times \frac{3}{2} = x$
1. Kayla walks \(3\frac{3}{5}\) miles each day. Which of the following statements correctly describe how far she walks? Mark all that apply.
 - A. Kayla walks \(14\frac{2}{5}\) miles in 4 days.
 - B. Kayla walks \(23\frac{4}{5}\) miles in 7 days.
 - C. Kayla walks 34 miles in 10 days.
 - D. Kayla walks \(102\frac{2}{5}\) miles in 31 days.

2. The table shows how many hours some of the part-time employees at the toy store worked last week.

<table>
<thead>
<tr>
<th>Name</th>
<th>Hours Worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conrad</td>
<td>6(\frac{2}{3})</td>
</tr>
<tr>
<td>Giovanni</td>
<td>9(\frac{1}{2})</td>
</tr>
<tr>
<td>Sally</td>
<td>10(\frac{3}{4})</td>
</tr>
</tbody>
</table>

This week, Conrad will work \(1\frac{3}{4}\) times longer than last week. Giovanni will work \(1\frac{1}{3}\) times longer than last week. Sally will work \(\frac{2}{3}\) the number of hours she worked last week. Match each employee's name to the number of hours he or she will work this week.

<table>
<thead>
<tr>
<th>Employee</th>
<th>Hours This Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conrad</td>
<td>7(\frac{1}{6})</td>
</tr>
<tr>
<td>Giovanni</td>
<td>12(\frac{2}{3})</td>
</tr>
<tr>
<td>Sally</td>
<td>11(\frac{2}{3})</td>
</tr>
</tbody>
</table>

3. For numbers 3a–3d, select Yes or No to indicate whether each equation is true.
 - 3a. \(\frac{3}{5} \times \frac{2}{7} = \frac{21}{35}\)
 - Yes
 - No
 - 3b. \(\frac{2}{8} \times \frac{5}{9} = \frac{10}{36}\)
 - Yes
 - No
 - 3c. \(\frac{7}{8} \times \frac{5}{9} = \frac{35}{72}\)
 - Yes
 - No
 - 3d. \(\frac{1}{2} \times \frac{3}{5} = \frac{4}{10}\)
 - Yes
 - No
1. A builder has an 8-acre plot divided into \(\frac{1}{4} \)-acre home sites. How many \(\frac{1}{4} \)-acre home sites are there? There are 32 home sites.

2. For numbers 2a–2e, select Yes or No to indicate whether each equation is correct.
 - 2a. \(3 \div \frac{1}{4} = \frac{12}{4} \) \(\square \) Yes \(\square \) No
 - 2b. \(7 \div \frac{1}{2} = 14 \) \(\square \) Yes \(\square \) No
 - 2c. \(\frac{1}{5} \div 4 = 20 \) \(\square \) Yes \(\square \) No
 - 2d. \(\frac{1}{2} \div \frac{1}{10} = \frac{1}{10} \) \(\square \) Yes \(\square \) No
 - 2e. \(\frac{1}{7} \div 3 = 21 \) \(\square \) Yes \(\square \) No

3. Choose the numbers to create a story problem that represents \(4 \div \frac{1}{6} \).
 - Bill bought \(\frac{1}{6} \) pound(s) of cheese. He made grilled cheese sandwiches and used \(\frac{1}{6} \) pound(s) of cheese in each sandwich. Bill made 24 sandwiches.

4. Divide. Draw a number line to show your work.
 - \(2 \div \frac{1}{3} = 6 \)

5. Adan has \(\frac{3}{4} \) quart of milk. If he pours the same amount of milk into 3 glasses, each glass will contain \(\frac{1}{6} \) quart of milk.

6. Brendan made a loaf of bread. He gave equal portions of \(\frac{1}{2} \) of the loaf of bread to 6 friends. Which diagram could Brendon use to find the fraction of the loaf of bread that each friend received? Mark all that apply.
 - A
 - B
 - C
 - D

7. Landon and Colin bought \(\frac{1}{2} \) pound of strawberries. They are sharing the strawberries equally. Each person will receive \(\frac{1}{4} \) pound of strawberries.
1. Gabriel made 4 small meatloaves. He cut each meatloaf into fourths. How many $\frac{1}{4}$-size pieces of meatloaf does Gabriel have? Draw lines in the model to find the answer.

Gabriel has 16 $\frac{1}{4}$-size pieces of meatloaf.

2. Camilla has a $\frac{1}{2}$ pound of raisins that she will divide evenly into 5 bags. Shade the diagram to show the fractional part of a pound that will be in each bag.

3. A 6-mile walking trail has a distance marker every $\frac{1}{3}$ mile. How many markers are along the trail?

There are 18 markers along the trail.

4. Eric has 4 pieces of clay. He cut each piece of clay into thirds. How many $\frac{1}{3}$-size pieces of clay does Eric have? Draw lines in the model to find the answer.

Eric has 12 $\frac{1}{3}$-size pieces of clay.

5. Cecilia has $\frac{3}{4}$ pound of trail mix that she will divide equally into 3 bags. Shade the diagram to show the fractional part of a pound that will be in each bag.

6. Adrian made 3 granola bars. He cut each bar into fourths. How many $\frac{1}{4}$-size pieces of granola bar does Adrian have? Draw lines in the model to find the answer.

Adrian has 12 one-quarter-size pieces of granola bar.

7. Kyle made a loaf of banana bread. He gave equal portions of $\frac{1}{2}$ of the loaf to 4 friends. Which diagram could Kyle use to find the fraction of the loaf that each friend received? Mark all that apply.

8. Ben is making bread that calls for 5 cups of flour. His measuring cup only holds $\frac{1}{2}$ cup. How many times will Ben need to fill the measuring cup to get the 5 cups of flour?

Ben will need to fill the measuring cup 10 times.

9. Tina has $\frac{3}{4}$ quart of iced tea. She pours the same amount into each of 3 glasses. Which equation represents the fraction of a quart of iced tea that is in each glass? Mark all that apply.

$$\frac{1}{2} \div \frac{1}{4} = n$$

$$2 \div 3 = n$$

$$\frac{1}{2} \times \frac{1}{3} = n$$

$$\frac{1}{2} \div 3 = n$$
1. Maureen has \(\frac{1}{4} \) pound of raisins. She divides the raisins into 4 servings. Each serving contains \(\frac{1}{16} \) pound of raisins.

2. A giant tortoise can walk about \(\frac{1}{10} \) meter per second on land. A cooter turtle can walk about \(\frac{1}{2} \) meter per second on land.

Part A

How long would it take a giant tortoise to travel 5 meters? Show your work.

\[
5 \div \frac{1}{10} = 5 \times 10 = 50
\]

It would take the giant tortoise 50 seconds to travel 5 meters.

Part B

How much longer would it take a giant tortoise than a cooter turtle to travel 10 meters on land? Explain how you found your answer.

80 seconds longer; Possible explanation: First, I found the time it would take the giant tortoise to travel 10 meters:

\[
10 \div \frac{1}{10} = 10 \times 10 = 100, \text{ or } 100 \text{ seconds.}
\]

Then, I found the time it would take the cooter turtle to travel 10 meters:

\[
10 \div \frac{1}{2} = 10 \times 2 = 20, \text{ or } 20 \text{ seconds.}
\]

Then I subtracted 100 − 20 = 80.

3. Dora buys one package each of 1-pound, 2-pound, and 4-pound packages of ground beef to make hamburgers.

How many \(\frac{1}{4} \)-pound hamburgers can she make? Show your work using words, pictures, or numbers.

Check students’ work. 28 hamburgers; Possible explanation: I found the total number of pounds of ground beef Dora bought: \(1 + 2 + 4 = 7 \). Then, I wrote a related multiplication expression to find \(7 \div \frac{1}{4} \) or \(7 \times 4 = 28 \).

4. Mrs. Green wrote the following problem on the whiteboard:

Lisa and Frank shared \(\frac{1}{3} \) pound of cherries equally. What fractional part of a pound did each person receive?

Part A

Molly wrote the following equation to solve the problem: \(2 \div \frac{1}{3} = n \).

Do you agree with Molly’s equation? Support your answer with information from the problem.

No, I disagree. Possible answer: Lisa and Frank are sharing \(\frac{1}{3} \) pound of cherries, I need to divide \(\frac{1}{3} \) by 2, so the correct equation is \(\frac{1}{3} \div 2 = n \).

Part B

Noah drew this diagram to solve the problem.

Can Noah use his diagram to find the fractional part of a pound of cherries that each person received? Support your answer with information from the problem.

Yes. Possible answer: Noah divided the circle into 3 equal parts to represent thirds. Then, he divided each third in half. He shaded half of \(\frac{1}{3} \) of the circle. So, the diagram represents \(\frac{1}{3} \div 2 = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6} \). Since \(\frac{1}{6} \) of the circle is shaded, Lisa and Frank will each get \(\frac{1}{6} \) pound of cherries.

5. Kayleigh has \(\frac{1}{2} \)-cup of oil. She pours the same amount into each of 2 oil lamps. Which equation represents the fraction of a cup of oil that is in each oil lamp? Mark all that apply.

- A. \(\frac{1}{2} \div \frac{1}{4} = n \)
- B. \(\frac{1}{4} \times \frac{1}{2} = n \)
- C. \(2 \div \frac{1}{4} = n \)
- D. \(4 \div 2 = n \)
- E. \(\frac{1}{2} \div 2 = n \)
- F. \(2 \times \frac{1}{4} = n \)
1. The library is 5 miles from the post office. How many yards is the library from the post office?

8,800 yards

2. Billy made 3 gallons of juice for a picnic. He said that he made \(\frac{3}{4} \) quart of juice. Explain Billy's mistake.

Possible explanation: Billy divided the number of gallons by 4 to convert to quarts. He should have multiplied the number of gallons by 4 to find the number of quarts in 3 gallons.

\[3 \times 4 = 12 \text{ quarts} \]

3. The Drama Club is showing a video of their recent play. The first showing begins at 2:30 P.M. The second showing is scheduled at 5:25 P.M. with a \(\frac{1}{2} \)-hour break between the showings.

Part A
How long is the video in hours and minutes?

2 hours and 25 minutes

Part B
Explain how you can use a number line to find the answer.

Possible explanation: I can work backward from the start time of the second showing at 5:25. I count back \(\frac{1}{2} \) hour, which is 30 minutes, for the break between showings to 4:55. Then I can find the elapsed time between 2:30 and 4:55.

Part C
The second showing started 20 minutes late. Will the second showing be over by 7:45 P.M.? Explain why your answer is reasonable.

No. Possible explanation: The second showing started at 5:45 P.M. The movie lasts 2 hours 25 minutes, so it ends at 8:10 P.M., which is later than 7:45 P.M.

4. Fred bought 4 liters of liquid laundry detergent, 3,250 milliliters of fabric softener, and 2.5 liters of bleach. For numbers 4a-4e, select Yes or No.

4a. Fred bought 75 milliliters more fabric softener than bleach.
Yes No

4b. Fred bought 1.75 liters more laundry detergent than bleach.
Yes No

4c. Fred bought 750 milliliters more fabric softener than bleach.
Yes No

4d. Fred bought 0.75 liters more laundry detergent than bleach.
Yes No

4e. Fred bought 0.75 liters more laundry detergent than fabric softener.
Yes No

5. A male hippopotamus can weigh up to 10,000 pounds. How many tons is 10,000 pounds?

5 tons

6. Amar and his friends went to a movie at 4:45 P.M. The movie ended at 6:20 P.M.

Part A
How long was the movie?

1 hour(s) and 35 minutes

Part B
Amar got home 45 minutes after the movie ended. What time did Amar get home? Explain how you found your answer.

7:05 P.M.; Possible explanation: I need to find 45 minutes after 6:20 P.M. 6:20 to 7:00 is 40 minutes, so 5 minutes more is 7:05.
1. A builder is buying property to build new houses. The sizes of the lots are \(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{4}\). Organize the information in a line plot.

What is the average size of the lots?

\(\frac{1}{3}\) acre

2. The line plot shows the weights of bags of beans. What is the average weight of the bags? Show your work.

\[
\begin{align*}
\frac{1}{2} \text{ pound; } \\
\frac{1}{6} \times 2 &= \frac{2}{6} \text{ or } \frac{1}{3}; \frac{1}{3} \times 3 &= \frac{3}{3} = 1; \frac{1}{2} \times 4 &= \frac{4}{2} = 2; \frac{1}{2} \times 2 &= \frac{2}{2} = 1; \\
\frac{1}{3} + \frac{2}{3} + 1 &= 1 + \frac{3}{3} = 1 + 1 = 2; \\
6 + 12 &= 18
\end{align*}
\]

3. Amy filled bags with mixed nuts. The weights of the bags are \(\frac{1}{8}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{4}, \frac{1}{8}, \frac{1}{4}, \frac{1}{8}\). Organize the information in a line plot.

What is the average weight of the bags?

\(\frac{1}{4}\) pound(s)

4. The line plot shows the weights of stones found in a stream. What is the average weight of the stones? Show your work.

\[
\begin{align*}
\frac{8}{11} \text{ pound; } \\
\frac{8}{11} \times 2 &= \frac{16}{11} \text{ or } 1 \frac{5}{11}; \\
\frac{4}{11} \times 3 &= \frac{12}{11} \text{ or } 1 \frac{1}{11}; \frac{1}{11} \times 3 &= \frac{3}{11} \text{ or } 0 \frac{3}{11}; \\
\frac{1}{11} + 1 \frac{1}{11} + 2 + \frac{5}{11} &= 5 \\
5 + 11 &= \frac{5}{11}
\end{align*}
\]

5. Mika records the number of miles she walks each day.

Part A

Graph Mika’s results on the line plot.

Distance (miles)	Days
\(1\frac{1}{2}\) | \(\square\) \(\square\) \(\square\)
\(1\frac{1}{2}\) | \(\square\)
\(1\frac{1}{2}\) | \(\square\) \(\square\)
\(2\frac{1}{2}\) | \(\square\) \(\square\) \(\square\)
\(2\frac{1}{2}\) | \(\square\) \(\square\) \(\square\) \(\square\) \(\square\)

Part B

How many days did she walk and what was her total distance? Explain your thinking.

16 days for a total of 30 miles; Possible explanation: I multiplied each distance by the number of dots above the distance in the line plot, and then I added the products.

GO ON
1. Match the figure with the number of unit cubes that would be needed to build each figure. Not every number of unit cubes will be used.

- 8 unit cubes
- 9 unit cubes
- 10 unit cubes
- 11 unit cubes
- 12 unit cubes
- 16 unit cubes

2. Match the figure with the number of unit cubes that would be needed to build each figure. Not every number of unit cubes will be used.

- 6 unit cubes
- 7 unit cubes
- 8 unit cubes
- 9 unit cubes
- 10 unit cubes
- 12 unit cubes

What is the volume of the prism? Explain your thinking.

32 cubic units; Possible explanation: There are 8 unit cubes on the bottom layer. Since there are 4 layers each with 8 unit cubes, I multiplied 4 by 8 to get 32.

4. Match the figure with the number of unit cubes that would be needed to build each figure. Not every number of unit cubes will be used.

5. Joo-Chan builds a rectangular prism using unit cubes.

What is the volume of the prism? Explain your thinking.

40 cubic units; Possible explanation: There are 8 unit cubes on the bottom layer. Since there are 5 layers each with 8 unit cubes, I multiplied 5 by 8 to get 40.

6. Match the figure with the number of unit cubes that would be needed to build each figure. Not every number of unit cubes will be used.
1. A shipping crate holds 20 shoeboxes. The dimensions of a shoebox are 6 inches by 4 inches by 12 inches. For numbers 1a–1c, select Yes or No to indicate whether each statement is correct.
 1a. Each shoebox has a volume of 22 cubic inches. ○ Yes ○ No
 1b. Each crate has a volume of about 440 cubic inches. ○ Yes ○ No
 1c. If the crate could hold 27 shoeboxes, the volume of the crate would be about 7,776 cubic inches. ○ Yes ○ No

2. A pack of folders has a length of 5 inches, a width of 12 inches, and a height of 1 inch. The pack of folders will be shipped in a box that holds 12 packs of folders. For numbers 2a–2c, select Yes or No to indicate whether the statement is correct.
 2a. Each pack of folders has a volume of 60 cubic inches. ○ Yes ○ No
 2b. The box has a volume of about 720 cubic inches. ○ Yes ○ No
 2c. If the box held 15 packs of folders, it would have a volume of about 1,200 cubic inches. ○ Yes ○ No

3. A shipping crate holds 18 books. The dimensions of each book are 2 inches by 8 inches by 10 inches. For numbers 3a–3c, select Yes or No to indicate whether each statement is correct.
 3a. Each book has a volume of 20 cubic inches. ○ Yes ○ No
 3b. Each crate has a volume of about 2,880 cubic inches. ○ Yes ○ No
 3c. If the crate could hold 24 books, the volume of the crate would be about 3,840 cubic inches. ○ Yes ○ No

4. A shipping container holds 40 tissue boxes. The dimensions of a tissue box are 4 inches by 6 inches by 3 inches. For numbers 4a–4c, select Yes or No to indicate whether each statement is correct.
 4a. Each tissue box has a volume of 72 cubic inches. ○ Yes ○ No
 4b. Each container has a volume of about 1,440 cubic inches. ○ Yes ○ No
 4c. If a container could hold 48 tissue boxes, the volume of the container would be about 624 cubic inches. ○ Yes ○ No

5. A shipping container holds 40 gift boxes. The dimensions of a gift box are 4 inches by 5 inches by 2 inches. For numbers 5a–5c, select Yes or No to indicate whether each statement is correct.
 5a. Each gift box has a volume of 40 cubic inches. ○ Yes ○ No
 5b. Each container has a volume of about 1,600 cubic inches. ○ Yes ○ No
 5c. If a container could hold 50 tissue boxes, the volume of the container would be about 1,000 cubic inches. ○ Yes ○ No

6. Miranda has cubes that measure 4 inches on each side. Which of the statements are true? Mark all that apply.
 A. The volume of one cube is 48 cubic inches. ○ Yes ○ No
 B. If Miranda fills a box with 12 cubes, the volume of the box is about 768 cubic inches. ○ Yes ○ No
 C. If the volume of the box is 800 cubic inches, Miranda can fit 14 cubes in the box. ○ Yes ○ No
 D. If the volume of the box is 1,000 cubic inches, Miranda can fit 15 cubes in the box. ○ Yes ○ No
1. Victoria used 1-inch cubes to build the rectangular prism shown. Find the volume of the rectangular prism Victoria built.

\[5 \times 2 \times 2 = 20 \text{ cubic units}\]

2. Carlton used 1-centimeter cubes to build the rectangular prism shown. Find the volume of the rectangular prism Carlton built.

\[4 \times 3 \times 2 = 24 \text{ cubic centimeters}\]

3. Ryan built a rectangular prism out of cubes. Part A Find the volume of the prism.

\[5 \times 2 \times 2 = 20 \text{ cubic units}\]

Part B Ryan added 4 cubes to his prism. Calculate the volume. How has the volume changed?

\[20 + 4 = 24 \text{ cubic units}; \text{ Possible explanation: The volume increased by 4.}\]

4. Wendy used 1-centimeter cubes to build the rectangular prism shown. Find the volume of the rectangular prism Wendy built.

\[4 \times 4 \times 2 = 32 \text{ cubic centimeters}\]

5. Carmen used 1-inch cubes to build the rectangular prism shown. Find the volume of the rectangular prism Carmen built.

\[5 \times 2 \times 2 = 20 \text{ cubic inches}\]

6. Julio built a rectangular prism out of cubes. Part A Find the volume of the prism.

\[3 \times 3 \times 2 = 18 \text{ cubic units}\]

Part B Julio added 6 cubes to his prism. Calculate the volume. How has the volume changed?

\[18 + 6 = 24 \text{ cubic units}; \text{ Possible explanation: The volume increased by 6.}\]
Name__________________________

1. Mark packed 1-inch cubes into a box with a volume of 120 cubic inches. How many layers of 1-inch cubes did Mark pack?

 \[\text{5 layers} \]

2. Monica used 1-inch cubes to make the rectangular prism shown. For numbers 2a–2d, write the value from the tiles that makes each statement true. Each value can be used more than once or not at all.

 \[\begin{align*}
 \text{1} & \quad \text{3} & \quad \text{4} & \quad \text{5} & \quad \text{12} & \quad \text{15} & \quad \text{20} & \quad \text{60}
 \end{align*} \]

 2a. Each cube has a volume of \(\text{1} \) cubic inch(es).
 2b. Each layer of the prism is made up of \(\text{20} \) cubes.
 2c. There are \(\text{3} \) layers of cubes.
 2d. The volume of the prism is \(\text{60} \) cubic inches.

3. John used 1-inch cubes to make the rectangular prism shown. For numbers 3a–3d, write the value that makes each statement correct. Each value can be used more than once or not at all.

 \[\begin{align*}
 \text{1} & \quad \text{3} & \quad \text{5} & \quad \text{7} & \quad \text{12} & \quad \text{35} & \quad \text{125} & \quad \text{175}
 \end{align*} \]

 3a. Each cube has a volume of \(\text{1} \) cubic inch(es).
 3b. Each layer of the prism is made up of \(\text{35} \) cubes.
 3c. There are \(\text{5} \) layers of cubes.
 3d. The volume of the prism is \(\text{175} \) cubic inches.

4. Jessica packed 1-inch cubes into a box with a volume of 144 cubic inches. How many layers of 1-inch cubes did Jessica pack?

 \[\text{4 layers} \]

5. Donald used 1-inch cubes to make the rectangular prism shown. For numbers 5a–5d, write the value that makes each statement true. Each value can be used more than once or not at all.

 \[\begin{align*}
 \text{1} & \quad \text{3} & \quad \text{5} & \quad \text{6} & \quad \text{14} & \quad \text{30} & \quad \text{90} & \quad \text{120}
 \end{align*} \]

 5a. Each cube has a volume of \(\text{1} \) cubic inch(es).
 5b. Each layer of the prism is made up of \(\text{30} \) cubes.
 5c. There are \(\text{3} \) layers of cubes.
 5d. The volume of the prism is \(\text{90} \) cubic inches.

6. Manuel stores his favorite CDs in a box like the one shown. Use the numbers and symbols on the tiles to write a formula that represents the volume of the box. Symbols may be used more than once or not at all.

 \[\begin{align*}
 V & \quad 7 & \quad 10 & \quad 15 & \quad + & \quad \times & \quad \div
 \end{align*} \]

 \[V = 15 \times 10 \times 7 \]

 What is the volume of the box? \(\text{1,050} \) cubic centimeters
1. Jose stores his baseball cards in a box like the one shown.

Use the numbers and symbols on the tiles to write a formula that represents the volume of the box. Symbols may be used more than once or not at all.

\[V = 8 \times 10 \times 3 \]

What is the volume of the box? \[240 \] cubic inches

2. Megan’s aquarium has a volume of 4,320 cubic inches. Which could be the dimensions of the aquarium? Mark all that apply.

A 16 in. by 16 in. by 18 in.
B 14 in. by 18 in. by 20 in.
C 12 in. by 15 in. by 24 in.
D 8 in. by 20 in. by 27 in.

3. Ken keeps paper clips in a box that is the shape of a cube. Each side of the cube is 3 inches. What is the volume of the box?

\[V = 3 \times 3 \times 3 \]

\[27 \] cubic inches

4. Tom keeps sticky notes in a box that is the shape of a cube. Each side of the box is 4 inches. What is the volume of the box?

\[V = 4 \times 4 \times 4 \]

\[64 \] cubic inches

5. Dakota’s wading pool has a volume of 8,640 cubic inches. Which could be the dimensions of the wading pool? Mark all that apply.

A 24 in. by 30 in. by 12 in.
B 27 in. by 32 in. by 10 in.
C 28 in. by 31 in. by 13 in.
D 30 in. by 37 in. by 18 in.

6. Erin stores her photos in a box like the one shown.

Use the numbers and symbols on the tiles to write a formula that represents the volume of the box. Symbols may be used more than once or not at all.

\[V = 4 \times 9 \times 10 \]

What is the volume of the box? \[360 \] cubic inches

7. A shipping container has a volume of 2,880 cubic inches. Which could be the dimensions of the container? Mark all that apply.

A 10 in. by 12 in. by 24 in.
B 12 in. by 12 in. by 20 in.
C 12 in. by 15 in. by 18 in.
D 10 in. by 16 in. by 20 in.
Name ____________________________

1. What is the volume of the composite figure?

2. A composite figure is shown. What is the volume of the composite figure?

3. A composite figure is shown. What is the volume of the composite figure?

4. What is the volume of the composite figure?

5. A composite figure is shown. What is the volume of the composite figure?

6. Write the missing dimensions of the figure. Then use a formula and calculate the volume of the figure.

Volume = 36 cubic feet

Volume = 312 cubic centimeters

Volume = 476 cubic centimeters

Volume = 4,320 cubic inches

Volume = 276 cubic centimeters

2,640 cu m; Possible equation: $V = 8 \times 12 \times 10 + 20 \times 12 \times 7$
1. The letters on the coordinate grid represent the locations of the first four holes on a golf course. Which of the following accurately describes the location of a hole? Mark all that apply.

- Hole U is 4 units left and 4 units down from hole S.
- Hole F is 1 unit right and 7 units down from hole U.
- Hole T is 2 units left and 4 units up from hole S.
- Hole S is 3 units left and 5 units up from hole F.

2. Lindsey made a map of her town. Match each location below with the correct ordered pair that marks it on the coordinate grid. Not every ordered pair will be used.

- Clock Tower: (4, 4), (4, 1)
- Art Museum: (1, 3), (5, 4)
- East Park: (4, 5), (3, 1)
- Movie Theater: (2, 4), (1, 4)
- School: (4, 2)

3. Lucy's house is located at the point shown on the coordinate grid. Ainsley's house is located 2 units right and 3 units down from Lucy's house. Plot a point on the coordinate grid to represent the location of Ainsley's house.

What ordered pair represents the location of Lucy's house? **(3, 5)**

What ordered pair represents the location of Ainsley's house? **(5, 2)**

4. The map shows the locations of attractions at an amusement park. Match each location below with the correct ordered pair that marks it on the map. Not every ordered pair will be used.

- Ferris Wheel: (0, 4)
- Swimming Pool: (2, 4)
- Rollercoaster: (4, 3)
- Petting Zoo: (4, 2)
- Water Slide: (3, 4)

5. Luke's house is located at the point shown on the coordinate grid. Kyle's house is located 4 units left and 2 units up from Luke's house. Plot a point on the coordinate grid to represent the location of Kyle's house.

What ordered pair represents the location of Luke's house? **(5, 3)**

What ordered pair represents the location of Kyle's house? **(1, 5)**

6. The coordinate grid represents the school playground. Which of the following accurately describes the location of a playground area? Mark all that apply.

- The slide is 2 units left and 4 units up from the soccer field.
- The baseball field is 1 unit left and 3 units down from the slide.
- The jungle gym is 4 units right and 1 unit down from the baseball field.
- The soccer field is 3 units right and 1 unit up from the baseball field.
1. For 6 days in a row, Julia measured the depth of the snow in a shaded area of her backyard. The line graph shows her data. Between which two days did the depth of the snow decrease the most?

between Day 5 and Day 6

2. The table shows how much a puppy weighs from 1 month old to 5 months old.

<table>
<thead>
<tr>
<th>Age (in months)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (in pounds)</td>
<td>12</td>
<td>18</td>
<td>23</td>
<td>31</td>
<td>34</td>
</tr>
</tbody>
</table>

What ordered pairs would you plot to show the puppy’s weight on a coordinate grid? How do you think the ordered pairs would be different if the puppy’s weight was measured every week instead of every month? Explain your reasoning.

(1, 12), (2, 18), (3, 23), (4, 31), (5, 34); Possible answer: There would be many more ordered pairs since there would be several weight measurements per month. Also, the puppy’s weight would not increase as fast since it would not gain as much weight in a week as it does in a month.

3. Randy is training for a race. She makes a table that shows how long it takes her to run different distances.

<table>
<thead>
<tr>
<th>Number of Miles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (in minutes)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Part A

Write the number pairs as ordered pairs. Then write the rule to describe how the number pairs are related.

(1, 10), (2, 20), (3, 30), (4, 40); Rule: Multiply the number of miles by 10.

Part B

Graph the ordered pairs on the coordinate plane.

4. A scientist made a line graph that shows how a bear’s average heart rate changes over time.

For numbers 4a-4c, select Yes or No to indicate whether each statement is correct.

4a. The bear’s heart rate is at its highest in July. Yes No
4b. The bear’s average heart rate increases by 10 beats per minute from July to August. Yes No
4c. The bear’s heart rate is at its lowest in January. Yes No
1. Mr. Delgado sees this sign while he is driving. For numbers 1a–1b, choose the values and term that correctly describes the shape Mr. Delgado saw.

1a. The figure has 3 sides and 0 vertices.

1b. All of the sides are congruent, so the figure is not a polygon.

2. Javier drew the shape shown. For numbers 2a–2b, choose the values and term that correctly describe the shape Javier drew.

2a. The figure has 6 sides and 7 angles.

2b. The figure is a regular octagon.

3. For numbers 3a–3c, write the name of one quadrilateral from the tiles to complete a true statement. Use each quadrilateral once only.

3a. A rectangle is always a parallelogram.

3b. A square is always a rhombus.

3c. A trapezoid is never a parallelogram.

4. Mario is making a diagram that shows the relationship between different kinds of quadrilaterals. In the diagram, each quadrilateral on a lower level can also be described by the quadrilateral(s) above it on higher levels.

Part A
Complete the diagram by writing the name of one figure from the tiles in each box. Not every figure will be used.

Part B
Mario claims that a rhombus is sometimes a square, but a square is always a rhombus. Is he correct? Explain your answer.

Yes; Possible explanation: A square has 4 sides that are congruent and equal. A square with these features is also a rhombus. However, when a rhombus does not have 90 degree angles, it is not a square.

5. Kayla drew the shape shown. For numbers 5a–5b, choose the values and term that correctly describe the shape Kayla drew.

5a. The figure has 4 sides and 6 angles.

5b. The figure is a regular hexagon.
1. Fran drew a triangle with no congruent sides and 1 right angle. Which term accurately describes the triangle? Mark all that apply.
 - A isosceles
 - C acute
 - B scalene
 - D right

2. Nathan drew a scalene, obtuse triangle. For 2a–2c, choose Yes or No to indicate whether the figure shown could be the triangle that Nathan drew.
 - 2a. Yes No
 - 2b. Yes No
 - 2c. Yes No

3. Kelly drew a triangle with exactly 2 congruent sides and 3 acute angles. Which of the following accurately describes the triangle? Mark all that apply.
 - A isosceles
 - C obtuse
 - B acute
 - D equilateral

4. Kristin drew a triangle with 2 congruent sides and 1 obtuse angle. Which term accurately describes the triangle? Mark all that apply.
 - A isosceles
 - C acute
 - B scalene
 - D obtuse

5. Natalie drew an acute, isosceles triangle. For 5a–5c, choose Yes or No to indicate whether the figure shown could be the triangle that Natalie drew.
 - 5a. Yes No
 - 5b. Yes No
 - 5c. Yes No

6. For numbers 6a–6f, choose Yes or No to indicate whether the name applies to the polygon.
 - 6a. quadrilateral
 - 6b. rectangle
 - 6c. square
 - 6d. parallelogram
 - 6e. rhombus
 - 6f. trapezoid